Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells

نویسندگان

  • Hiroyuki Sonoki
  • Tomonari Sato
  • Satoshi Endo
  • Toshiyuki Matsunaga
  • Masahiko Yamaguchi
  • Yasuhiro Yamazaki
  • Junko Sugatani
  • Akira Ikari
چکیده

Claudin-2 is highly expressed in human lung adenocarcinoma tissues and cells. Knockdown of claudin-2 decreases cell proliferation and migration. Claudin-2 may be a novel target for lung adenocarcinoma. However, there are no physiologically active substances of foods which decrease claudin-2 expression. We here found that quercetin, a flavonoid present in fruits and vegetables, time- and concentration-dependently decreases claudin-2 expression in lung adenocarcinoma A549 cells. In the present study, we examined what regulatory mechanism is involved in the decrease in claudin-2 expression by quercetin. Claudin-2 expression was decreased by LY-294002, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, and U0126, a MEK inhibitor. These drugs inhibited the phosphorylation of Akt and ERK1/2, which are downstream targets of PI3-K and MEK, respectively. In contrast, quercetin did not inhibit the phosphorylation. Both LY-294002 and U0126 inhibited promoter activity of claudin-2, but quercetin did not. The stability of claudin-2 mRNA was decreased by quercetin. Quercetin increased the expression of microRNA miR-16. An inhibitor of miR-16 rescued quercetin-induced decrease in the claudin-2 expression. These results suggest that quercetin decreases claudin-2 expression mediated by up-regulation of miR-16 expression and instability of claudin-2 mRNA in lung adenocarcinoma cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kaempherol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells

Claudin-2 is highly expressed in human lung adenocarcinoma tissues and may be a novel target for cancer chemotherapy because knockdown of claudin-2 decreases cell proliferation. We found that flavonoids including kaempferol, chrysin, and luteolin concentration-dependently decrease claudin-2 expression in lung adenocarcinoma A549 cells. Claudin-2 expression is up-regulated by mitogen-activated p...

متن کامل

MicroRNA 192 regulates chemo-resistance of lung adenocarcinoma for gemcitabine and cisplatin combined therapy by targeting Bcl-2.

Lung cancer is the most leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) accounting for over 80% of all lung cancer cases. Patients with NSCLC are mostly treated with platinum-based chemotherapy. Chemoresistance is a leading cause of chemo-therapy failure in NSCLC treatment. Recent studies have shown that dysregulation of microRNAs might modulate the resi...

متن کامل

Up-regulation of miR-21 decreases chemotherapeutic effect of dendrosomal curcumin in breast cancer cells

Objective(s): Despite the good results of anticancer activities by curcumin, there are some hurdles that limit the use of curcumin as an anticancer agent. Many methods were examined to overcome this defect like the use of the dendrosomal curcumin (DNC). There is increasing evidence that miRNAs play important roles in biological processes. In this study, we focus on the roles of microRNA-21 in t...

متن کامل

Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...

متن کامل

miR-511 induces the apoptosis of radioresistant lung adenocarcinoma cells by triggering BAX.

Radioresistance is one of the main reasons for the failure of radiotherapy in lung cancer. The present study was conducted to identify the role of miR-511 in suppressing the growth of radioresistant lung adenocarcinoma cells. First, a radioresistant A549/R cell line was generated after prolonged exposure to X-rays for 68 Gy (2 Gy/day, 5 days/week) and the radioresistance was confirmed by wound ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015